فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


نویسندگان: 

Homayonfar Leila | Joudaki Saba

اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    7
  • شماره: 

    1
  • صفحات: 

    30-44
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    11
  • دانلود: 

    0
چکیده: 

Background: At the beginning of 2020, the pneumonia-like COVID-19 virus spread rapidly worldwide. With the emergence of this dangerous virus, work, and daily life have become very difficult. To control this virus, all the centers are closed and quarantined by the government and the countries of the world. Every day, many people from all over the world die due to COVID-19. Many efforts are being made in all fields to diagnose and treat people infected with this virus. For this reason, many researchers started working on identifying this virus and its types. The Scientifics, in computer science, did not sit idle either. Method: In some studies, different image processing methods and algorithms have been used to extract the edge features of the Computed Tomography (CT) images of the lung. In this clinical-computerized study, lung CT images of non-infected and infected people from different hospitals in Lorestan province were used. This collection has 90 stereotypes of images in jpg format of CT scans of people's lungs, each file has more than 200 images from different angles of lung imaging. The preprocessing methods were the first step of the research. In the second phase, edge detection was applied to the dataset to get the highest accuracy rate. Consequently, a classification Convolutional Neural Network (CNN)-ALEXNET architecture was used to reach the final aim. Results: The results show that the average accuracy rate of image edge extraction with a threshold value of 0.1 is 93% and the accuracy rate of ALEXNET architecture classification is 100%. The proposed method helps physicians to improve disease diagnosis from lung CT images to achieve a more accurate detection rate. Conclusion: This study shows that the CNN-ALEXNET architecture effectively increases the diagnosis accuracy rate than the other methods. It is suggested that educational programs for researchers in the field of disease detection from radiology images be provided and that the effectiveness of different types of deep learning methods be compared in future studies.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 11

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 12
نویسندگان: 

HEIDARI ALI | Erfanian Hamid Reza

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    5
  • شماره: 

    1
  • صفحات: 

    50-55
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    46
  • دانلود: 

    0
چکیده: 

Since the outbreak of Covid19 virus to date, various methods have been introduced in order to diagnose the virus infection. One of the most reliable tests is assessing frontal Chest X-Ray(CXR) images. As the virus causes inflammation in the infected patient's lung, it is possible to diagnose whether one is infected or not using his/her CXR image. in contrast to other tests which mostly are based on the virus genome, this test is not time-consuming and it is reliable against new strains of the virus. However, this test requires a specialist to assess the CXR images. As the datasets of Covid19 patient CXR images are increasing in number, it is possible to use machine learning techniques in order to assess CXR images automatically and even online. In this study, we used deep learning approaches and we fine-tuned the Alexent in order to automatically classify CXR images and label the whether "Covid" or "Normal". The data we used in this study include about 10, 000 chest images, half of which are related to CXR images and the other half are related to patients with Covid19 infection. The model proved to be very reliable with 99. 26% accuracy in diagnosis and 95% sensitivity and 99. 7% specificity.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 46

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1399
  • دوره: 

    7
  • شماره: 

    1
  • صفحات: 

    29-45
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    480
  • دانلود: 

    166
چکیده: 

بازشناسی شییء در صحنه های پیچیده ی ازجمله توانایی های شگرف سامانه بینایی انسان است که تاکنون مدل های محاسباتی بینایی در پیاده سازی آن چندان موفق نبوده اند. در این راستا محققان سعی دارند با شناسایی سازوکار مغز و الهام از آن این مدل را بهبود بخشند. یکی از موفق ترین مدل های ارایه شده در بازشناسی شییء شبکه های عصبی کانولوشنی (CNN’ s) هستند. این مدل ها تنها قادر به شبیه سازی مسیر پیش روی بینایی انسان می باشند. با این حال شواهد مطالعات علوم اعصاب نشان می دهند سامانه بینایی انسان سیگنال های بالا به پایین انتظار را در راستای افزایش دقت و سرعت بازشناسی شییء در زمینه های پیچیده به کار می بندد. در این مقاله با بهره مندی از سیگنال های بالا به پایین انتظار، سعی بر شبیه سازی مسیر بازخوردی سیستم بینایی انسان شده است. به این منظور مدل کانولوشنی ALEXNET به عنوان مسیر پیش رو سیستم بینایی استفاده شد. برای بازشناسی شییء از مدل آموزش یافته با مجموعه داده ی ImageNet و برای بازشناسی صحنه از مدل آموزش یافته با مجموعه تصاویر صحنه Places استفاده شد. شبکه آموزش دیده بر روی تصاویر صحنه (Place_CNN) برای تولید بردار بازخورد مبتنی بر اطلاعات حاصل از صحنه در نظر گرفته شد. سیگنال های بازخوردی شامل اطلاعاتی از فراوانی تکرار شییء موردنظر در صحنه ی جاری هستند. این سیگنال ها با قاعده ی پس انتشار در قالب سیگنال های بالابه پایین با اطلاعات مسیر پیش رو تلفیق و در شبکه ی تشخیص شییء بازخورد می شوند. به منظور سنجش مدل پیشنهادی آزمایش هایی با استفاده از چند مجموعه داده صورت گرفت. نتایج نشان داد که ترکیب اطلاعات بازخوردی با مسیر پیش رو باعث بهبود معنی دار عملکرد مدل پیشنهادی نسبت به مدل پایه ی ALEXNET می شود. استفاده از اطلاعات محتوایی تصاویر باعث بهبود عملکرد بازشناسی شییء می شود به خصوص هنگامی که شییء هدف در شرایط چالشی قرار گرفته است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 480

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 166 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1400
  • دوره: 

    9
  • شماره: 

    2
  • صفحات: 

    259-268
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    230
  • دانلود: 

    0
چکیده: 

متن کامل این مقاله به زبان انگلیسی می باشد. لطفا برای مشاهده متن کامل مقاله به بخش انگلیسی مراجعه فرمایید.لطفا برای مشاهده متن کامل این مقاله اینجا را کلیک کنید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 230

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نشریه: 

رادار

اطلاعات دوره: 
  • سال: 

    1398
  • دوره: 

    7
  • شماره: 

    1 (پیاپی 21)
  • صفحات: 

    117-128
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    520
  • دانلود: 

    183
چکیده: 

رادارهای LPI (Low Probability of Intercept) و یا با احتمال رهگیری پایین، رادارهایی هستند که به دلیل توان کم، پهنای باند گسترده و فرکانس متغیر، احتمال رهگیری آنها توسط سامانه های شناسایی بسیار پایین است. بنابراین با ظهور این نوع فناوری از رادارها، همواره روش های جدیدی در حوزه پردازش سیگنال و تصویر مورد نیاز است تا با استفاده از این روش ها، بتوان سیگنال های مذکور را در مرحله اول تشخیص داده و در مرحله دوم کلاس بندی کرده و در مرحله آخر بتوان مشخصات آنها را استخراج کرد. برای حل مسیله، امروزه یادگیری عمیق به عنوان یکی از روش های جدید در حوزه پردازش سیگنال و تصویر مطرح است. در این مقاله با استفاده از روش یادگیری عمیق امکان آشکارسازی و کلاس بندی انواع مدولاسیون رادارهای LPI، بررسی خواهد شد. در این راستا ابتدا سیگنال دریافتی با استفاده از تحلیل فوریه زمان-کوتاه، در حوزه زمان-فرکانس مورد تجزیه وتحلیل قرار گرفته و خروجی این بخش به صورت یک تصویر، به دو شبکه الکس نت و لی نت که از شبکه های یادگیری عمیق هستند، برای آشکارسازی و کلاس بندی انواع مدولاسیون های مورد استفاده در رادارهای LPI، داده خواهد شد. نتایج به دست آمده از این شبیه سازی ها نشان می دهد که درSNR (نسبت سیگنال به نویز)، dB5-دقت عملکرد روش الکس نت 34/97% و دقت عملکرد روش لی نت 94% است که نشان از عملکرد بهتر روش الکس نت است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 520

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 183 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1398
  • دوره: 

    17
  • شماره: 

    58
  • صفحات: 

    103-111
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    979
  • دانلود: 

    511
چکیده: 

یادگیری عمیق، یکی از رویکردهای مورد توجه در یادگیری ماشین می باشد که شامل معماری های مهمی می باشد. شبکه کانولوشنی عمیق، یکی از معماری های مورد توجه در یادگیری عمیق می باشد که در پردازش های مربوط به تصاویر دیجیتالی کاربرد فراوانی پیدا کرده است. در این پژوهش، شبکه کانولوشنی ALEXNET، به منظور شناسایی چهره در عکس های ورودی، مورد استفاده قرار گرفته است. تنظیم دقیق مدل از قبل تعلیم داده شده ی ALEXNET، با تبدیل لایه های کاملا متصل به لایه های کانولوشنی و اعمال فیلتر های مناسب، انجام شده است. استفاده از برش های مختلف عکس ورودی و نیز افزایش تعداد لایه های کانولوشنی به منظور استخراج خصوصیت های با سطح بالاتر به همراه فیلترهای مناسب در مدل های پیشنهادی مورد توجه قرار گرفته است. به منظور تجسم اعمال فیلترها در لایه های مختلف، از روش کانولوشن معکوس استفاده شده است. از دو پایگاه داده ی Caltech face و LFW به منظور نشان دادن نتایج، استفاده شده است. پس از پردازش های لازم بر روی پایگاه داده های مورد استفاده، نتایح به دست آمده از شبکه ALEXNET، قبل و بعد از تنظیم دقیق، مورد بررسی قرار گرفته است. نتایج بررسی، حاکی از بهبود عملکرد شبکه، تحت عملیات انجام شده، می باشد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 979

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 511 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    53
  • شماره: 

    2
  • صفحات: 

    127-138
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    297
  • دانلود: 

    45
چکیده: 

اینترنت اشیاء، یک فناوری جدید است که این فناوری از طریق اینترنت با اشیاء پیرامون خود ارتباط برقرار می کند و باهدف سنجش و کنترل از راه دور استفاده می گردد. در زمینه امنیت شبکه اینترنت اشیاء (IoT)، شناسایی دقیق انواع حملات به این شبکه ها که توسط میزبان های زامبی تحت کنترل مهاجم راه اندازی می شوند، اهمیت زیادی دارد. برای کاهش این تهدیدات، به روش های جدیدی نیاز است تا حملاتی که دستگاه های IoT را به خطر انداخته است، در کم ترین زمان ممکن شناسایی و از زیان های ناشی از حملات جلوگیری کنند. در این مقاله، یک شبکه عصبی جدید جهت بهبود تشخیص نفوذ به شبکه اینترنت اشیاء بر اساس شبکه عصبی کانولوشنال ALEXNET و الگوریتم بهینه سازی میگوی آشوبی به نام (MONANET) پیشنهاد شده است. در شبکه ی MONANET به منظور بهبود دقت در تشخیص نفوذ به شبکه ی IOT و عدم نیاز به تنظیم دستی پارامترها، فراپارامترهای شبکه عصبی با استفاده از الگوریتم میگوی آشوبی به صورت پویا انتخاب می شوند. مقدار تابع تلفات مجموعه اعتبارسنجی که از اولین آموزش مدل شبکه عصبی با استفاده از مجموعه داده Danmini doorbell به دست می آید، به عنوان مقدار تناسب CKH در نظر گرفته می شود. عملکرد جامع شبکه ی پیشنهادی و الگوریتم های GRU، ANN، SVM،LSTM ،FNN ،R-CNN وAPSO-CNN در پنج شاخص ارزیابی و در 12 اجرای مستقل مقایسه شده اند. نتایج به دست آمده نشان دهنده بهبود تشخیص نفوذ به شبکه اینترنت اشیاء است. الگوریتم پیشنهادی توانسته است بادقت 89.99 % حملات به شبکه اینترنت اشیاء را تشخیص دهد. نتایج تجربی برتری روش پیشنهادی را نسبت به سایر روش های مرز دانش از نظر بهبود دقت طبقه بندی نشان می دهد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 297

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 45 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    91
  • شماره: 

    2
  • صفحات: 

    149-156
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    31
  • دانلود: 

    0
چکیده: 

استفاده از فناوری­ های نوین برای تشخیص و اندازه گیری تراکم جمعیت آفات، می­تواند گام مهمی برای تسهیل در اجرای برنامه های مدیریت تلفیقی آفات و کنترل دقیق­تر و مؤثرتر آن ها باشد. در این پژوهش، از تکنیک یادگیری عمیق و شبکه عصبی کانولوشنال با معماری ALEXNET، جهت تشخیص و شمارش خودکار شب پره مینوز گوجه فرنگی Tuta absoluta (Myrick) (Lepidoptera: Gelechiidae)، یکی از آفات کلیدی گیاه گوجه فرنگی در ایران، استفاده شد. برای جمع آوری تصاویر حشرات بالغ T. absoluta، تعداد 15 تله دلتا در دو هکتار از مزارع گوجه فرنگی پردیس کشاورزی و منابع طبیعی دانشگاه رازی، نصب گردد. به منظور تهیه تصاویر، از دوربین عکاسی سونی مدل  DSC-WX100 با دقت مؤثر حسگر 18 مگاپیکسل، استفاده شد. برای ارزیابی عملکرد شبکه عصبی پیچشی با معماری ALEXNET از پارامترهای دقت متوسط، دقت و یادآوری استفاده و برای ارزیابی عملکرد در شمارش، از منحنی رگرسیون خطی و ضریب تبیین استفاده شد. پارامترهای دقت متوسط (98/0)، دقت (100) و یادآوری (100) نشان از عملکرد بالای شبکه عصبی کانولوشنال در تشخیص شب پره مینوز گوجه فرنگی داشت و همچنین ضریب تبیین (98/0)، بیانگر دقت بالای شبکه در شمارش این آفت بود. به طور کلی، نتایج نشان داد که شبکه عصبی می­تواند راه­حلی کاربردی برای تشخیص و شمارش دقیق این آفت روی گوجه فرنگی با استفاده از تصاویر گرفته شده ارائه کند.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 31

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    2
  • شماره: 

    2
  • صفحات: 

    31-48
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    10
  • دانلود: 

    0
چکیده: 

این مقاله به بررسی کارایی طبقه بندهای ترکیبی CNN-DRNN در شناسایی آپنه خواب با استفاده از سیگنال الکتروکاردیوگرام قلب (ECG) پرداخته است. در این مطالعه، مدل های مختلف شبکه های عصبی کانولوشنی ازجمله ALEXNET، VGG16، VGG19 و ZFNet در ترکیب با مدل های شبکه عصبی بازگشتی عمیق شامل LSTM، GRU و BiLSTM مورد ارزیابی قرارگرفته است. این مدل ها با و بدون استفاده از بهینه سازهای هوش جمعی گورکن عسل و گرگ خاکستری برای تعیین مقادیر بهینه ابرپارامترها مقایسه شده اند. نتایج نشان می دهد که مدل ترکیبی ALEXNET-GRU پس از اعمال هر دو بهینه ساز، بهترین عملکرد را با دقت 95٪، نرخ تشخیص 61/97٪ و F-Score 37/93٪ ارائه کرده است. در این پژوهش، چالش بهینه سازی ابرپارامترها در مدل های یادگیری عمیق با استفاده از دو بهینه ساز گورکن عسل و گرگ خاکستری بررسی شده است. این بهینه سازها با الهام از رفتارهای طبیعت، تعامل غیرمستقیم میان عامل ها و توزیع هوشمند به حل این چالش کمک می کنند. البته، بهینه ساز گورکن عسل در مقایسه با گرگ خاکستری در انتخاب مقادیر بهینه ابرپارامترها عملکرد بهتری از خود نشان داده است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 10

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    9
  • شماره: 

    1
  • صفحات: 

    40-49
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    451
  • دانلود: 

    117
چکیده: 

مقدمه تخمین پاسخ به درمان همیشه یکی از کارهای چالش برانگیز یک انکولوژیست است. با توجه به تاثیر بسزای عود کردن تومور در برنامه درمانی بیماران مبتلا به سرطان ریه، یافتن روشی جهت پیش بینی و تشخیص عود این تومورها قبل از شروع درمان دارای اهمیت فراوان است. این امر امروزه به صورت تجربی انجام شده و دقت آن بسیار وابسته به تبحر و تجربه پزشک است. لذا هدف از این مطالعه ارایه روشی خودکار جهت تشخیص عود کردن سرطان ریه مبتنی بر ویژگی های تصویری و بالینی است. روش داده های مورد استفاده در این مطالعه از پرتال TCIA جمع آوری شده است. پس از پیش پردازش تصاویر، ناحیه بندی به روش اتسو و در مرحله بعد توسط مدل های از پیش آموزش دیده ALEXNET و GoogleNet ویژگی های رادیومیک استخراج و در کنار ویژگی های بالینی جهت تشخیص عود کردن ضایعه مورد استفاده قرار گرفت. در نهایت توسط برخی روش های یادگیری ماشین به طبقه بندی پرداخته شد. نتایج روش پیشنهادی ما در 162 بیمار مبتلا به سرطان ریه سلول غیر کوچک (NSCLC) با استفاده از پایگاه داده رادیوژنومیک NSCLC در پورتال (The Cancer Imaging Archive) TCIAمورد ارزیابی قرار گرفت. پس از پیش پردازش تصاویر، ناحیه بندی به روش اتسو و در مرحله بعد توسط مدل های از پیش آموزش دیده ALEXNET و GoogleNet ویژگی های رادیومیک استخراج و در کنار ویژگی های بالینی جهت تشخیص عود کردن ضایعه مورد استفاده قرار گرفت. در نهایت توسط برخی روش های یادگیری ماشین به طبقه بندی پرداخته شد. نتیجه گیری یافته اصلی این مطالعه آشکار شدن قابلیت روش های یادگیری عمیق در استخراج ویژگی از تصاویر پزشکی اشاره کرد. به عنوان مثال در این مطالعه شبکه ALEXNET قادر به استخراج ویژگی هایی از تصویر CT بیماران مبتلا به تومور ریوی بود که در تشخیص عود مجدد این ضایعات بسیار کمک کننده است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 451

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 117 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button